A Low-Cost, High-Precision Navigator for Unmanned Aircraft, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

Toyon Research Corporation proposes to develop a low-cost navigation system for unmanned aerial vehicles (UAVs) that achieves an attitude accuracy of better than 0.1 degrees using commercial-grade gyroscopes and accelerometers. An order of magnitude improvement in navigation performance will be achieved by fusing low-cost inertial sensor measurements with attitude and position measurements from a small-aperture GPS-based attitude (GPS/A) sensor. The Miniature Integrated Direction-finding Attitudedetermining Anti-jam System (MIDAAS(TM)) obtains position, velocity, attitude, and time (PVAT) measurements directly from GPS signals. MIDAAS employs an innovative small single-aperture antenna to compute full 3-D attitude (roll, pitch and yaw) using only two RF channels, leading to a smaller, simpler, lower-cost GPS/A receiver system. A stand-alone (gyro-less) MIDAAS unit can also be used to provide attitude information in addition to position and velocity on very small platforms. A unique ultra-tightly coupled (UTC) navigation architecture makes the system inherently more robust to interference and significantly improves the attitude estimate. In addition, MIDAAS provides active anti-jam protection and multipath mitigation thereby further improving the system integrity and robustness. The system performance will be demonstrated during the Phase I effort with data obtained during several flight tests, and will be compared with a higher-accuracy, more expensive GPS/IMU system.

Primary U.S. Work Locations and Key Partners

A Low-Cost, High-Precision Navigator for Unmanned Aircraft, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Low-Cost, High-Precision Navigator for Unmanned Aircraft, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Toyon Research	Lead	Industry	Goleta,
Corporation	Organization		California
• Armstrong Flight Research Center(AFRC)	Supporting	NASA	Edwards,
	Organization	Center	California

Primary U.S. Work Locations

California

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Summary: A Low-Cost, High-Precision Navigator for Unmanned Aircr aft, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/140668)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Toyon Research Corporation

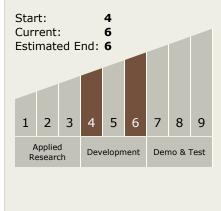
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Kenan O Ezal

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Low-Cost, High-Precision Navigator for Unmanned Aircraft, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.4 Attitude Estimation
 Technologies
 - □ TX17.4.3 Attitude
 Estimation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

